Conditions | 1 |
Paths | 1 |
Total Lines | 219 |
Lines | 0 |
Ratio | 0 % |
Changes | 5 | ||
Bugs | 0 | Features | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | /** |
||
16 | function (state, format, visibility, data, util, reactionService) { |
||
17 | let ct = this; |
||
18 | ct.state = state; |
||
19 | ct.data = data; |
||
20 | ct.util = util; |
||
21 | ct.format = format; |
||
22 | |||
23 | ct.getReactorArea = function(player) { |
||
24 | let level = player.global_upgrades.fusion_area; |
||
25 | let upgrade = data.global_upgrades.fusion_area; |
||
26 | let basePower = upgrade.power; |
||
27 | let multiplier = upgrade.power_mult; |
||
28 | return basePower * Math.floor(multiplier * level); |
||
29 | }; |
||
30 | |||
31 | ct.getBandwidth = function(player){ |
||
32 | let level = player.global_upgrades.fusion_bandwidth; |
||
33 | let upgrade = data.global_upgrades.fusion_bandwidth; |
||
34 | let basePower = upgrade.power; |
||
35 | let exp = upgrade.power_exp; |
||
36 | return basePower * Math.pow(exp, level); |
||
37 | } |
||
38 | |||
39 | function getFermiRadius(resource) { |
||
40 | let isotope = data.resources[resource]; |
||
41 | let A = isotope.energy/data.constants.U_TO_EV; |
||
42 | return data.constants.FERMI_RADIUS * Math.pow(A, 0.3333); |
||
43 | } |
||
44 | |||
45 | function getZ(resource){ |
||
46 | let isotope = data.resources[resource]; |
||
47 | let element = Object.keys(isotope.elements)[0]; |
||
48 | return data.elements[element].number; |
||
49 | } |
||
50 | |||
51 | ct.getCapacity = function(resource, player) { |
||
52 | let isotope = data.resources[resource]; |
||
53 | let element = Object.keys(isotope.elements)[0]; |
||
54 | let r = data.elements[element].van_der_waals; |
||
55 | let area = Math.PI*r*r; |
||
56 | return ct.getReactorArea(player)/area; |
||
57 | }; |
||
58 | |||
59 | ct.getTime = function(player) { |
||
60 | let time = ct.getFusionReaction(player).reactant.eV/ct.getBandwidth(player); |
||
61 | time = Math.floor(time); |
||
62 | return Math.max(1, time); |
||
63 | } |
||
64 | |||
65 | ct.getProductIsotope = function(beam, target) { |
||
66 | let beamN = parseInt(beam, 10); |
||
67 | let targetN = parseInt(target, 10); |
||
68 | |||
69 | let beamZ = getZ(beam); |
||
70 | let targetZ = getZ(target); |
||
71 | |||
72 | let productN = beamN+targetN; |
||
73 | let productZ = beamZ+targetZ; |
||
74 | |||
75 | return data.resource_matrix[productZ][productN]; |
||
76 | }; |
||
77 | |||
78 | ct.getProductEnergy = function(beam, target) { |
||
79 | let product = ct.getProductIsotope(beam, target); |
||
80 | if(!product){ |
||
81 | return 0; |
||
82 | } |
||
83 | let beamBE = data.resources[beam].binding_energy; |
||
84 | let targetBE = data.resources[target].binding_energy; |
||
85 | let productBE = data.resources[product].binding_energy; |
||
86 | |||
87 | return productBE - (beamBE + targetBE); |
||
88 | }; |
||
89 | |||
90 | ct.getCoulombBarrier = function(beam, target) { |
||
91 | let beamZ = getZ(beam); |
||
92 | let beamR = getFermiRadius(beam); |
||
93 | |||
94 | let targetZ = getZ(target); |
||
95 | let targetR = getFermiRadius(target); |
||
96 | |||
97 | let coulombBarrier = data.constants.COULOMB_CONSTANT*beamZ*targetZ* |
||
98 | Math.pow(data.constants.ELECTRON_CHARGE, 2)/(beamR+targetR); |
||
99 | return coulombBarrier * data.constants.JOULE_TO_EV; |
||
100 | }; |
||
101 | |||
102 | ct.getYieldPercent = function(player) { |
||
103 | let beam = state.player.fusion[0].beam; |
||
104 | let target = state.player.fusion[0].target; |
||
105 | let beamR = getFermiRadius(beam.name); |
||
106 | let targetR = getFermiRadius(target.name); |
||
107 | let beamArea = Math.PI*beamR*beamR; |
||
108 | let targetArea = Math.PI*targetR*targetR; |
||
109 | |||
110 | let beamPercentArea = beamArea*beam.number/ct.getReactorArea(player); |
||
111 | let targetPercentArea = targetArea*target.number/ct.getReactorArea(player); |
||
112 | |||
113 | return beamPercentArea*targetPercentArea; |
||
114 | }; |
||
115 | |||
116 | ct.getYield = function(player){ |
||
117 | let percentYield = ct.getYieldPercent(player); |
||
118 | let target = state.player.fusion[0].target.number; |
||
119 | let beam = state.player.fusion[0].beam.number; |
||
120 | // the yield comes from wherever source is more abundant |
||
121 | let impacted = Math.max(target, beam); |
||
122 | return Math.floor(percentYield*impacted); |
||
123 | }; |
||
124 | |||
125 | ct.getFusionReaction = function(player) { |
||
126 | let reaction = { |
||
127 | reactant: {}, |
||
128 | product: {} |
||
129 | }; |
||
130 | |||
131 | let beam = state.player.fusion[0].beam; |
||
132 | let target = state.player.fusion[0].target; |
||
133 | |||
134 | reaction.reactant[beam.name] = beam.number; |
||
135 | reaction.reactant[target.name] = target.number; |
||
136 | |||
137 | let coulombBarrier = ct.getCoulombBarrier(beam.name, target.name); |
||
138 | reaction.reactant.eV = coulombBarrier*beam.number; |
||
139 | |||
140 | let product = ct.getProductIsotope(beam.name, target.name); |
||
141 | let numberYield = ct.getYield(player); |
||
142 | |||
143 | reaction.product[product] = numberYield; |
||
144 | |||
145 | // return the leftovers from the reaction |
||
146 | if(numberYield < beam.number){ |
||
147 | reaction.product[beam.name] = beam.number - numberYield; |
||
148 | } |
||
149 | if(numberYield < target.number){ |
||
150 | reaction.product[target.name] = target.number - numberYield; |
||
151 | } |
||
152 | |||
153 | let energyExchange = ct.getProductEnergy(beam.name, target.name); |
||
154 | if(energyExchange < 0){ |
||
155 | reaction.reactant.eV += energyExchange*numberYield; |
||
156 | }else if(energyExchange > 0){ |
||
157 | reaction.product.eV = energyExchange*numberYield; |
||
158 | } |
||
159 | |||
160 | return reaction; |
||
161 | }; |
||
162 | |||
163 | function activateFusion(player){ |
||
164 | let beam = player.fusion[0].beam; |
||
165 | let target = player.fusion[0].target; |
||
166 | |||
167 | if(player.resources[beam.name].number < beam.number || |
||
168 | player.resources[target.name].number < target.number){ |
||
169 | player.fusion[0].running = false; |
||
170 | return; |
||
171 | } |
||
172 | player.resources[beam.name].number -= beam.number; |
||
173 | player.resources[target.name].number -= target.number; |
||
174 | |||
175 | player.fusion[0].running = true; |
||
176 | } |
||
177 | |||
178 | ct.stopFusion = function(player, fusion) { |
||
179 | if(fusion.running){ |
||
180 | let beam = state.player.fusion[0].beam; |
||
181 | let target = state.player.fusion[0].target; |
||
182 | |||
183 | player.resources[beam.name].number += fusion.beam.number |
||
184 | player.resources[target.name].number += fusion.target.number |
||
185 | } |
||
186 | |||
187 | fusion.eV = 0; |
||
188 | fusion.active = false; |
||
189 | fusion.running = false; |
||
190 | fusion.run = false; |
||
191 | } |
||
192 | |||
193 | function updateFusion(player, fusion) { |
||
194 | let bandwidth = ct.getBandwidth(player); |
||
195 | let spent = Math.min(player.resources.eV.number, bandwidth); |
||
196 | fusion.eV += spent; |
||
197 | player.resources.eV.number -= spent; |
||
198 | } |
||
199 | |||
200 | function endFusion(player, fusion, reaction) { |
||
201 | // energy is not lost! if there are leftovers, give them back to the player |
||
202 | let leftover = fusion.eV - reaction.reactant.eV; |
||
203 | reaction.product.eV = reaction.product.eV + leftover || leftover; |
||
204 | // Reaction checks that the player has the quantity necessary |
||
205 | // to react, but here eV is stored in the fusion object. By setting the cost to 0 |
||
206 | // we make sure that it always work |
||
207 | reaction.reactant= {eV:0}; |
||
208 | reactionService.react(1, reaction, player); |
||
209 | |||
210 | fusion.eV = 0; |
||
211 | player.fusion[0].running = false; |
||
212 | } |
||
213 | |||
214 | function update(player){ |
||
215 | for(let fusion of player.fusion){ |
||
216 | if(!fusion.active){ |
||
217 | continue; |
||
218 | } |
||
219 | if(fusion.eV === 0 && fusion.run){ |
||
220 | activateFusion(player); |
||
221 | } |
||
222 | if(!fusion.running){ |
||
223 | continue; |
||
224 | } |
||
225 | updateFusion(player, fusion); |
||
226 | let reaction = ct.getFusionReaction(player); |
||
227 | if(fusion.eV >= reaction.reactant.eV){ |
||
228 | endFusion(player, fusion, reaction) |
||
229 | } |
||
230 | } |
||
231 | } |
||
232 | |||
233 | state.registerUpdate('fusion', update); |
||
234 | } |
||
235 | ]); |
||
236 |